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(4) INTRODUCTION 

The purpose of our project is to develop a novel technique for improved imaging of dense tissue 
regions with digital mammography systems. The basic idea is to automatically detect any large 
dense region within a whole breast digital mammogram, and to take a second digital mammogram 
of only that region using automated collimation and automated spot compression along with a 
more penetrating exposure. This second separate "spot mammogram" is taken within seconds of 
the full-field mammogram while the breast is maintained in the same position by a specially 
designed device that also allows additional compression by a spot paddle. Since only the dense 
region is exposed, detector saturation will not be an issue. Both restriction of the x-ray beam to a 
small area and compression of the tissue to a thinner thickness will decrease the volume of tissue 
that scatters x-rays thereby improving the contrast between lesions and surrounding dense breast 
tissue. Tissue differentiation will also be improved because of the increased separation of 
overlaying structures as a result of the spot compression. Furthermore, in comparison with 
conventional spot compression, the automated technique should produce more accurate 
compression of suspicious regions because it eliminates the need for the repositioning of the breast 
between the full-field and spot images, and the "spot" location is determined by computer analysis 
of the digital full-breast image rather than estimated by eye from a radiograph. In brief, the 
project entails development of software to analyze digital mammograms and automatically 
delineate suspicious dense tissue regions, and the development of hardware to automatically 
collimate the x-ray beam to those regions and to enable spot compression of those regions while 
maintaining the breast in the same position as for the original full-breast digital mammogram. 

(5) BODY 

During the first year of this project (September 1, 1999 - August 31, 2000), the following was 
accomplished relative to the tasks in the approved statement of work. 

A) Develop software to recognize and delineate dense breast regions in full- 
breast mammograms. 

Much work was devoted towards developing software that would automatically locate substantial 
dense breast regions in digitized mammograms.    Two major programs to assist in accomplishing 
this task were produced. Both were written in Visual C++, which permitted the development of 
intuitive, user-friendly graphical interfaces for future studies in which radiologists will employ the 
programs to set gray level thresholds to isolate suspicious regions and will draw boundaries of the 
suspicious regions. The manual segmentation may serve as a gold standard for verification of the 
accuracy of the automated dense region detection program, and if the automated computer 
segmentation is not satisfactory for a give mammogram, manual correction will be allowed before 
activating the autospot collimation and compression. A database of 304 digitized dense breast 
images was generated for the programs by digitizing clinical mammograms that were classified as 
B1RADS 3 and 4 density by an MQS A-approved radiologist. Detailed descriptions of the major 
computer programs follows: 
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1) SEGNEW Computer Program 

SEGNEW is a computer program that determines dense tissue regions in a mammogram. The 
operation of this program can best be explained by referring to its graphics display window as 
shown in Figure 1. 
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Figure 1: SEGNEW Display Window 

1. Three versions of the digitized mammogram are displayed side by side at the top of the screen. 
The leftmost version is the original mammogram that has been modified by unsharp masking 
and software equalization to better display the breast periphery. The center mammogram 
shows the same mammogram with white lines delineating the computed breast boundary and 
pectoral muscle area (if present), and yellow painted pixels representing automatically detected 
dense tissue. The breast border is determined using a modified version of a routine we 
previously developed for a method to equalize exposures in mammography [1,2] that was also 
supported by a USAMRMC grant [No. DAMD 17-94-J-4292]. The methods for detecting the 
pectoral muscle and for determining an automated threshold for discriminating dense breast 
tissue were described by our group in a paper that was recently submitted for publication in 
Medical Physics [3]. The dense breast tissue discrimination is achieved using a rule-based 
technique, which determines the threshold from the shape of a smoothed amplitude histogram 
of the pixel gray-levels within the breast tissue region excluding the pectoral muscle. The 
same amplitude histogram is displayed beneath the 3 versions of the mammogram in Figure 1. 
Beneath this histogram are 3 sliders.   The top slider is used to set a manual dense tissue 
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threshold. All pixels in the rightmost displayed mammogram that have gray levels greater 
than the manual threshold are painted yellow in the image, while the others retain their original 
gray levels. The radiologists will adjust the slider to find a threshold that results in yellow 
areas that best depict areas in the leftmost mammogram that they believe are candidates for 
spot mammography. It is important to note that the automatic threshold that is employed for 
the center image is chosen to differentiate all of the dense tissue; whereas, the manual 
threshold only selects the subset of the dense tissue that is suspicious and in need of spot 
imaging. To assist the radiologists in their assessments of the images, a contrast enhancement 
tool is provided. Contrast enhancement is achieved by adjusting the 2 lower süders. The 
middle slider sets the minimum pixel value and the bottom slider sets the maximum pixel 
value in the original image that are transformed to the 256 gray levels in the output image. As 
the sliders are adjusted, the contrast and brightness of the image change. Once the radiologists 
are satisfied with their manual threshold settings, they press the record button, which causes 
the automatic and manual thresholds to be stored in a database. The differences between the 
automatic and manual thresholds and the ratios of the thresholds are computed in this database. 
In a future study we will evaluate the differences and ratios to determine if a statistically 
significant relationship exists that could be used to compute the appropriate manual threshold. 
The SEGNEW program also incorporates a software routine that determines the three largest 
dense tissue regions in the manually thresholded image. These regions are defined as being 
composed of contiguous pixels that have gray level values above the manual threshold. The 
program is invoked by pressing the "Auto-Detect" button at the bottom left corner of the 
display window. The program paints the largest dense region red, the second largest green, 
and the third largest blue. The result is displayed in the rightmost mammogram (See Figure 2, 
below) 
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Figure 2: Example of routine that finds 3 largest dense tissue regions. These areas are indicated 
with the red, green and blue pixels in the rightmost mammogram. 

Sometimes the dense regions contain areas that are connected by thin "bridges". Often it is 
appropriate to break these bridges to further subdivide the regions and better discriminate the three 
largest regions. A subroutine was written to detect and break such bridges. It is invoked by 
pressing the "Split Bridges" button on the window. This routine permits the user to select a 
threshold bridge width. This threshold is set to a percentage of the mean width of the region in a 
particular direction. Any bridge pixels that are less than this threshold width are cut out from the 
contiguous pixel region. The bridge pixels are searched for in the horizontal, vertical and diagonal 
directions. We have found a default bridge threshold of 10% appears to work well. This value 
may change in the future based on further radiologist evaluations.   The rightmost mammogram in 
Figure 3 shows an example of the 3 largest dense regions in a mammogram as determined by the 
SEGNEW program, and Figure 4 shows the results of the "Split Bridges" routine when it was 
applied to the rightmost image in Figure 3. 
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Figure 3: CC mammogram with three largest determined dense regions shown at right. 
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Figure 4: Same mammogram as in Figure 3 after application of "Split Bridges" routine. Note the 
large red region in Figure 3 is now partitioned into two regions (red and green). 

2) DENSETEST Computer Program 

Another method to demarcate suspicious dense regions in mammograms is to have the radiologists 
hand-draw boundaries around the regions. DENSETEST is a program that was written with this 
goal. The user can trace a suspicious region using the computer mouse. The trace consists of 
connected segments whose anchor points are generated by clicks of the leftmost mouse button. 
Thus, the user can control the fineness of detail of the outline. A high-detail outline is created 
using many mouse clicks as the outline is drawn, and a low-detail outline is generated using very 
few mouse clicks. When in the course of drawing the outline, the trace approaches the starting 
point, the program automatically completes the connection to the starting point and the outline is 
finished. After this, the user can adjust the outline by grabbing any of the anchor points and 
pulling them to a new position. The outline is stored when the user presses the "NEXT" button in 
the display window. DENSETEST also computes the minimum sized rectangle which bounds the 
final traced border of the suspicious region. This rectangle corresponds with the collimated region 
in a 4-collimator blade implementation of automated spot collimation. The algorithm computes 
the minimum sized rectangle by an iterative approach similar to that described in the original 
proposal. That is, first, the center of mass of the dense region is located. Next, perpendicular x- 
and y- axes are drawn through the center of mass. The dense tissue pixels having maximum and 
minimum x and y coordinates relative to these axes are determined. Lines perpendicular to the 
axes passing through these points define the rectangle. The area of this rectangle is computed. 
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Next, the axes are rotated by 1-degree increments, and the bounding rectangle and the rectangle 
areas are computed. The rectangle with the smallest area is selected. Example of the display 
window with traced borders (in red) and minimum sized bounding rectangles (in green) are shown 
in Figure 5 A and B, below. 
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Figure 5 A and B: Two examples of traced suspicious dense tissue regions (in red) and the 
corresponding computed minimum sized rectangles (in green) delineating the collimated area for 
automated spot mammography 

Notice in Figure 5 that the DENSETEST program permits the user to adjust the contrast and 
brightness of the image with slider controls similar to those employed in the SEGTEST program 
described above. Also, there is a button labeled "Ellipse". This button initiates a routine that 
computes the minimum sized ellipse bounding the traced border. This will allow us to investigate 
the use of elliptically shaped collimator blades. It presently is a works -in-progress. 

Elliptical Collimation 

The advantage of an elliptical collimator is that two blades could be used to restrict the beam 
rather than 4, which are required for rectangular collimation. This would also simplify the 
mechanics of the system since only 2 stepper motors would be required for collimator blade 
translation rather than 4 for rectangular collimation. A potential disadvantage of elliptical 
collimation is that the aperture shapes that can be achieved are more restricted and therefore the 
degree of collimation may be significantly less than what can be achieved with rectangular 
collimation. Thus, more "normal" tissue would have to be exposed in some cases with elliptical 
collimation. Investigations are planned to determine the adequacy of elliptical collimation. 
Outlines of dense breast regions created by radiologists using the DENSETEST program will be 
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fit with ellipses. An average elliptical curve will be computed, and the collimation accuracy that 
can be obtained with this shape will be compared with that which can be achieved with rectangular 
collimation. One measure of collimation accuracy will be the ratio of the area of the ellipse or 
rectangle to the area of the freehand outlined region. If the average elliptical curve does not work 
well, other arc shapes will be tried. This investigation is not described in the original proposal. It 
is a new idea that we conceived while working with mechanical engineering students building a 
prototype asymmetric collimator for the project (See below). The investigation of arched or 
elliptical shaped collimator blades will be performed during the second year of the project. 

Radiologist's review of programs and planned changes 

The Radiologist who is working with us on this project reviewed the computer programs. In 
general, he found them to be satisfactory. He did suggest that we modify the DENSETEST 
program to permit the radiologists to outline the 3 most suspicious regions rather than just one. 
He also told us he would prefer that the collimation not be as tight as initially planned. He would 
prefer an additional 1-cm margin around the entire boundary so more of the breast architecture 
would be seen in the spot compression image. We are implementing these changes. We will also 
investigate just using the resulting outlines with the DENSETEST program to determine the gray 
level threshold in the SEGNEW program. Should a simple threshold not work, we will investigate 
other means for defining the suspicious dense region such as use of textural and morphometric 
features. 

B) Develop secondary collimator 

Working in conjunction with 5 senior mechanical engineering students at the University of 
Michigan, we designed and built a prototype collimator. This collimator was designed to be 
attached to the aperture holder of the Fischer MammoVision biopsy system in our lab. Various 
design options were explored including an "elevator door" (4-blade) system which produces 
asymmetric rectangular collimation, a two L-shaped plate collimator, an actuator rod system with 
two rods attached to each collimator blade to translate and angle the blade, a two blade collimator 
with arched ('C'-shaped) openings, and a 4-blade collimator that employs a splined shaft gear 
selector clutch system which enables driving 2 plates, one at a time with a single motor. The 
system consisting of two blade collimators with arched ('C'-shaped) openings was chosen because 
it was the least complex, requiring fewer stepper motors and controllers.   The system that was 
built consists of two 2 mm thick arch shaped steel plate collimator blades ("doors") that are 
translated back and forth by stepper motors via rack and pinion drives. The entire assembly is 
mounted to an aluminum plate, which has a "lazy susan" bearing to permit rotation. Rotation is 
achieved via a worm and roller connection to a third stepper motor. A CAD drawing of the 
prototype is shown in figure 6A, and a photo of the final unit is shown in figure 6B, below. 

Page  12 



Type 23 M 

|ng Gear 

Type 17 Motors   / 
Elliptical Doors 

Figure 6. CAD drawing of prototype automatic collimator (A) and photo of finished product (B). 
(The elliptical collimator blades are shown in a fully open position in (B).) 
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The composition and thickness of the collimator blades was decided upon based on x-ray 
transmission calculations for a variety of metals. Metals that were investigated included lead (Pb; 
p=l 1.36 g/cm3), steel (99% Fe, 1% C; p-7.83 g/cm3), tin (Sn; p=7.3 g/cm3), tungsten (W; 
p=19.3 g/cm3) and tantalum (Ta; p=16.6 g/cm3). The goal was to find a metal that was very 
attenuating, light weight, and easy to machine. X-ray attenuation coefficients were employed 
from Tables in The Physics of Radiology by Johns and Cunningham [4] and from the Saloman 
and Hubbell [5]. Examples of the results for various thicknesses of the metals are shown in Table 
1, below: 

Table 1: X-ray Transmissions of Various Metals 
Fraction transmitted at 20 ceV      |        Fraction transmitted at 30 keV 

Thickness 
inches 

Thickness 
mm 

Pb Steel Tin W Ta            Pb Steel Tin W Ta 

1/64 0.4 1.51 
E-17 

3.97 
E-04 

2.04 
E-03 

5.15 
E-23 

2.71           1.51 
E-18          E-06 

8.20 
E-02 

6.80 
E-06 

2.23 
E-08 

1.19 
E-06 

1/32 0.8 2.28 
E-34 

1.58 
E-07 

4.16 
E-06 

2.66 
E-45 

7.32           2.28 
E-36           E-12 

6.72 
E-03 

4.63 
E-11 

4.99 
E-16 

1.43 
E-12 

1/16 1.8 5.18 
E-68 

2.49 
E-14 

1.73 
E-11 

7.05 
E-90 

5.36           5.19 
E-71           E-24 

4.51 
E-05 

2.14 
E-21 

2.49 
E-31 

2.04 
E-24 

2 1.70 
E-85 

7.27 
E-18 

2.76 
E-14 

4.82 
E-113 

2.95     I     4.62 
E-89           E-30 

3.35 
E-06 

9.11 
E-27 

2.78 
E-39 

1.42 
E-30 

1/8 3.2 2.69 
E-135 

6.20 
E-28 

2.99 
E-22 

4.97 
E-179 

2.87     j     2.69 
E-141    J     E-47 

2.04 
E-09 

4.58 
E-42 

6.18 
E-62 

4.16 
E-48 

3/8 6.4 7.23 
E-270 

3.84 
E-55 

8.91 
E-44 

0.00 
E+00 

8.26           7.26 
E-282    I     E-94 

4.14 
E-18 

2.10 
E-83 

3.82 
E-123 

1.73 
E-95 

The transmissions were calculated using the equation: 

Transmission = e ^ p'pt 

where (u/p) is the mass attenuation coefficient in cm2/g, p is the mass density in g/cm3 and t is the 
thickness in cm. The transmissions were calculated at 20 keV which is approximately the 
effective energy of a conventional mammography x-ray beam spectrum and at 30 keV which at 
this time is greater than the maximum effective energy of the x-ray beams used in digital 
mammography. The areal densities of the metals were also computed in order to compare the 
masses of the various thicknesses of the metals. These are listed in Table 2, below. 

Table 2: Areal Densities of the Meta s (= pt) (unit = = g / cm ) 
Thickness 
(inches) 

Thickness 
(mm) 

Lead 
(Pb) 

Steel Tin 
(Sn) 

Tungsten 
(W) 

Tantalum 
(Ta) 

1/64 0.4 0.45 0.31 0.29 0.77 0.66 
1/32 0.8 0.90 0.62 0.58 1.53 1.32 
1/16 1.8 1.80 1.24 1.16 3.06 2.64 

2 2.27 1.57 1.46 3.86 3.32 
1/8 3.2 3.61 2.49 2.32 6.13 5.27 
3/8 6.4 7.21 4.97 4.63 12.26 10.54 

Also, with the aid of a service person, we opened the gantry cover of a GE DMR mammography 
system at our hospital and examined the collimator blades. They were found to be made of 2-mm 
thick steel plate. As can be seen from Table 1, the x-ray transmission through such a blade is 7 x 
10"18 at 20 keV and 3 x 10"6 at 30 keV. From table 2, the weight of such a blade is 1.6 g/cm2. 
Similar transmissions can be achieved with significantly less weight using 1/64" of either lead 
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(0.45 g/cm2), tungsten (0.77 g/cm2) or tantalum (0.66 g/cm2). 1/16" of tin (1.16 g/cm2) could also 
be used; however, tin has a K-absorption edge at 29.2 keV and will transmit larger amounts of x- 
rays just below this K-edge than other metals so it would not be an ideal choice. We decided to 
use 2-mm steel in our prototype because it provides adequate attenuation, is readily available, is 
easy to machine, and is inexpensive. The much lighter weights of lead, tungsten, and tantalum 
will be explored for the next collimator system that is built. The very thin thicknesses of these 
metals make them less rigid than 2 mm of steel, so they may need to be mounted on a thicker 
light- metal plate such as aluminum. The entire weight of the combined metals will be compared 
with that of steel alone and other factors including the ease of machining of the metals and 
availability and price will also be considered in making the final decision. 

Based on torque requirements, NEMA # 17 motors ((20 oz-in. holding torque) were employed to 
translate the two collimator blades, and a NEMA #23 motor (50 oz-in, holding torque) was 
employed to rotate the assembly. The NEMA #17 stepper motors were driven with Mill Shaf 
Technologies (Yadkinville, NC) A-100 stepper motor controllers, and the NEMA #23 stepper 
motor were driven with a Mill Shaf Technologies A-200 stepper motor controller. 

Tests were performed with the system, and it was found that the time to collimate was about 1 to 
1.5 seconds depending upon the desired final positions of the collimator blades. This time would 
be adequate for patient studies. One major problem that was discovered was that the use of the 
simple stepper motor controllers limited the accuracy of collimation. For example, programming 
a motor to move 50 steps in the forward direction resulted in the translation of a collimator blade 
by approximately 0.5 inches; whereas, programming the same motor to move the 50 steps in the 
reverse direction resulted in a translation of only 0.3 inches.   It appears that the motor skipped 
steps in the reverse direction. This could be corrected by using a more sophisticated and 
expensive closed-loop, proportional derivative integral controller with zero steady state error. 

Improvements for future automated collimator system 

From our initial experience with the prototype automated collimator system, the students derived 
the following list of improvements that they would recommend in future systems: 

1) For patient safety and to reduce noise levels, a foam-lined shroud should be added to cover 
moving parts. 
2) For reliability, a mechanical stop should be added to the ends of the tracks in order to prevent 
the collimator blades from falling out of the tracks if the racks should disengage from the pinions. 
3) For smoother meshing of the worm drive with the gear, a support bearing should be added. The 
shaft of the drive would pass through this bearing to eliminate the present cantilever design, and 
the bearing would be secured to the aluminum plate for stability. 
4) For faster rotation speeds with more compact mounting, the worm gear should be replaced by 
multiple spur gears. 
5) To eliminate inaccuracies in collimator blade translation, use closed loop proportional integral 
derivative (PID) controllers with zero steady state error. 
6) If angle accuracy is not super critical, consider using a smooth, quiet operating DC motor 
instead of a NEMA #23 stepper motor to rotate the apparatus. 
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We will implement many of these suggested changes in our next design. 

C) Develop system to restrain breast during changeover from full-field to spot 
compression paddle and reduce tension as spot paddle presses against breast. 

We worked with another 5 senior mechanical engineering students on the design and manufacture 
of a system to restrain the breast during the changeover from the full-field to the spot compression 
paddle and to reduce the tension as the spot paddle presses against the breast. This was a different 
group of students than that which worked with us on the automated collimator apparatus. This 
second group also worked with us on the spot paddle positioning system described in Section D, 
below. 

Several designs for the breast restraining apparatus were considered. In one, a roll of Mylar was 
attached to one side of the breast support plate, and it was unrolled across the breast and attached 
to the other side of the plate. A ratcheting mechanism would be employed to tighten the Mylar 
membrane. In a second design, a Mylar membrane is stretched and held in place by a TJ' shaped 
frame. This frame translates on rails located at the bottom left and right corners. The frame is 
connected to the rails with sliders that include a ratcheted self-locking mechanism. This design 
called for the operator (i.e. the x-ray technologist) to release the lock on the sliders as the spot 
paddle compressed the breast.   The second design, although not practical as a clinical device, was 
chosen because a prototype could be constructed easily to allow us to perform initial 
investigations. A drawing and photo of the apparatus appear in Figure 7. 
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Fig. 7: Sketch (top) and photo (bottom) of breast restraining device. 
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In general, the prototype was found to be unsatisfactory. The TJ' frame was designed to hold the 
Mylar in place by pinching it between two metal plates, but this did not work well. The Mylar 
slipped out, wrinkled, and could not be held tight. Even passing screws through the frame into 
holes punched near the edges of the Mylar did not secure the Mylar adequately. The mechanism 
for locking the position of the frame on the rails was difficult and awkward to use. The handles on 
the locks were too short and it was hard to unlock the mechanism from both sides to translate the 
frame on the rails. A single rail at the bottom center of the 'U'-shaped frame would have been 
better, but this would have interfered with the translator for the primary compression paddle of the 
Fischer unit, which is located in this region. During the second year of this proposal, we will 
develop a more satisfactory breast restraining device based on design number 1 described above. 

D) Develop system to position spot compression paddle. 

Although the development of the system to position the spot compression paddle was not 
originally planned until the second year ("months 15-19"), we did accomplish this task during the 
first year. We worked with the same 5 senior year mechanical engineering students that worked 
on the breast-restraining device. In this case, the results were much more satisfactory. The goal 
was to develop a system to efficiently translate a spot compression paddle to the desired location 
for the acquisition of the automated spot compression image. A sketch detailing the parts of the 
translational device is shown in Figure 8, below. 
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Figure 8: Exploded view of spot-paddle translation device. 

Page  18 



A photo of the device attached to the Fischer Mammo Vision biopsy system is shown in Figure 9. 

Figure 9: Photo of the spot compression paddle translation device in operation on the Fischer 
biopsy system. The plastic spot compression paddle is shown at an asymmetric position 
compressing a CIRS mammography phantom. 

Note the paddle is positioned next to a CIRS breast phantom. The height of the paddle is adjusted 
by turning a knob that is connected to a horizontal cross-shaft containing two gears that travel 
along two vertical racks, one on each side of the device. The spring and disks on each side (Fig. 
8) are used to maintain the vertical positions of the cross-shaft and crossbar. The steel guide pins 
slide along the slots and prevent the crossbar from twisting. The paddle mount was milled to slide 
along the crossbar and the cross-shaft. The paddle mount is secured in position with a 
thumbscrew. Metric scales are glued to the top of the crossbar and to the left upright. These 
scales enable the user to position the paddle to the nearest millimeter in the horizontal and vertical 
directions.   Tests of the system showed it was able to compress with a force of 30 lbs., which was 
the intended design. We were also able to position the device from a remote starting position to a 
desired horizontal and vertical position with an accuracy of 1 mm in about 4 seconds, which is 
reasonable. 

We did experience some problems with the translator. The crossbar guide pins had too much play, 
which allowed the crossbar to twist a small amount. Also, the slide mechanism for horizontal 
positioning of the spot paddle would sometimes bind. Our plans for building another translator 
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include machining to greater tolerances and the use of a rack and pinion system for horizontal as 
well as vertical positioning. 

E) Develop prototype autospot system and evaluate with phantoms 

In our original proposal, we planned to perform all of the autospot development on the Fischer 
Mammo Vision biopsy system we have in our lab. The reason was that that we had no digital 
mammography system at our hospital, and the biopsy system with radiography (CR) plates as the 
digital detectors was the most convenient system available for research. Just this past year, 
General Electric received FDA approval for clinical use of their Senographe 2000D full-field 
digital mammography (FFDM) system, and our hospital has purchased one. For the past two 
months, it has been temporarily housed in our research lab while the hospital renovates a clinical 
room. During this time, we have had a chance to perform some phantom experiments with the GE 
FFDM system.    In one experiment, we added a simulated dense tissue and a simulated mass 
region to an experimental dual modality (x-ray and ultrasound) compressible breast phantom that 
we had manufactured for us by CIRS. A photo of the phantom with a blue dense region made of 
SMUD, a PlayDo-like compound made by Mattel (El Segundo, CA), and a yellow mass region 
made of Silly Putty (Binney and Smith, Inc. Easton, PA) is shown in Figure 10. 

Figure 10: Compressible dual-modality CIRS breast phantom with superimposed simulated dense 
breast region (blue) and spiculated mass (yellow). 
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We then imaged the phantom with full field collimation, and with special collimation restricted to 
the dense tissue - mass region. The latter was achieved by taping strips of lead to the collimator 
port of the x-ray tube (See Figure 11). 

Chest Wall Side 

Figure 11: Handmade supplemental collimator used to restrict the x-ray beam to only the dense 
tissue - mass (blue/yellow) region in Figure 10. 

The automatic exposure control (AEC) and automatic technique facilities (AOP) of the GE system 
were employed to generate both images.   These are very sophisticated mechanisms. Based on a 
brief test-exposure, and compressed breast thickness information, the AOP automatically sets the 
x-ray tube target and filtration and kVp for optimal imaging in the given mode. These modes 
include CONTRAST AUTO in which the contrast is optimized using a lower effective x-ray beam 
energy, and a higher glandular x-ray dose than with the other techniques, STANDARD AUTO, 
which uses a higher x-ray beam energy to achieve a high quality image at less dose than in 
CONTRAST AUTO, and DOSE AUTO, which is optimized to produce a high quality image at a 
low glandular tissue dose. Our understanding of the operation of automatic exposure control of 
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this system from discussions with GE engineers is as follows.   In contrast to conventional systems 
in which the phototimer of the AEC samples a small region of the breast at a technologist selected 
position to determine the exposure time, the GE FFDM system samples the entire image, and 
determines the exposure time from real-time sampled pixel values in the densest 1 cm x 1 cm 
region of the image. This sampling occurs in both the full-field and spot collimated images. 
Thus, in theory, the dense tissue should be adequately penetrated in both full-field and spot 
collimated images generated with the GE FFDM system.   Our preliminary tests tend to confirm 
this. With appropriate adjustment of the window level and width to maximize the displayed 
contrasts of the full-field and spot collimated images of the phantom, we noticed very little 
difference between the two. A few subtle microcalcifications were visible in the spot collimated 
images and not in the full-field images, and the contrasts of some microcalcifications were better 
in the spot collimated image. However, in general, most of the image details (microcalcifications, 
simulated masses, etc.) were, on a subjective level, equally visible in both images. A quantitative 
analysis will be performed in future experiments to compare the contrast-detail in the images. 

We also performed a second experiment in which we employed both spot compression and 
collimation. For this experiment, we employed a CIRS dual-modality phantom, and the middle 
sized spot compression paddle and spot collimator of the GE FFDM system. We did have to 
move the phantom to the region of interest for spot collimation, which would not be required with 
our proposed auto spot collimation/compression technique. The resulting full-field and spot 
images are shown in Figure 12, below. The white arrow in the spot image points to a mass that 
shifted positions when the spot compression was applied. This mass was hidden beneath another 
mass-like object in the full field image. This demonstrates a key advantage of spot compression, 
namely the spreading out of overlapping tissues for reduced superposition in projections and 
therefore improved imaging of lesions. Spot compression, however, may not always be successful 
in separating overlapping tissues. The degree of separation depends upon the position of the spot 
paddle relative to the tissues, the shearing forces placed by the spot compression paddle on the 
lesion and surrounding tissues, the tissue composition and architecture near the lesion, the sizes of 
the structures that are beneath and above the lesion as well as the size of the lesion itself. A better 
appreciation of the true nature of a suspicious object could be achieved by combining automated 
spot compression and collimation with 3D imaging (e.g., stereo mammography or tomosynthesis). 
The exploration of designing such a capability into a second generation automated spot system for 
human subject studies was a task mentioned in our original proposal. 
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Figure 12. Full-field (left) and spot compression (right) images of a compressible breast phantom 
produced with a GE digital mammography system. The arrow in the right image points to a 
simulated mass that, due to spot compression, was separated from overlapping with another 
object, resulting in improved conspicuity of the mass. 

F) Changes in Tasks for Second Year 

Our preliminary studies with the full field digital mammography (FFDM) system that our hospital 
recently purchased indicate it would be the ideal test bed for developing the automated spot 
collimation/compression system. It was our eventual goal to adapt a system that we developed 
with the x-ray biopsy system in our laboratory and CR plate detector to such a full field digital 
mammography system.   Although the full field digital mammography system will not be as 
convenient to use for research since it will be in the clinic and not our laboratory, we still can use 
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it during off hours. Advantages to developing an add-on automated spot system for the full-field 
digital mammo unit far outweigh the inconvenience issue cited above. These advantages relative 
to the biopsy/CR system include: the superior quantum detection efficiency and therefore superior 
image quality of the digital detector, the much faster readout time for this detector, the very 
sophisticated automatic exposure control and automated technique factor selection of the unit for 
optimized imaging in both full-field and spot modes, and the use of more conventional upright 
instead of prone positioning for patient imaging. We have therefore decided to develop the 
automated spot system as an add-on to the GE Senographe 2000D full field digital mammography 
system. The spot collimator, spot paddle positioner, and breast restraining devices that were 
designed and manufactured during the first year of the project were prototypes that were to be 
redesigned and manufactured based on our initial experiences (see above). They all can be readily 
adapted to the GE Senographe 2000D. In addition, this FFDM with its fixed digital detector with 
rapid image readout is more ideal for developing spot stereomammography, and will afford us the 
opportunity to pursue this capability at an earlier stage (i.e. the second year) and to a greater depth 
than was originally planned in the project. Our initial studies indicate this feature may potentially 
be as important as spot collimation and spot compression. In summary, the primary changes for 
the second year of research will be to adapt the automated spot collimation and compression 
device to the GE Senographe 2000D FFDM instead of the laboratory biopsy /CR plate system, and 
to develop spot stereomammography with the FFDM system. 

(6) KEY RESEARCH ACCOMPLISHMENTS 

• Acquired a database of 304 digitized dense breast images for computer analysis. 
• Developed a computer program that permits the user to select a gray level threshold for 

segmenting suspicious dense breast tissue regions in digitized mammograms. Program also 
automatically determines 3 largest dense tissue regions. 

• Developed a computer program that enables users to trace borders of suspicious dense 
regions in digitized mammograms. This program also computes the smallest rectangular 
region that bounds the traced border. The rectangle corresponds with the positions of 
collimator blades for automated collimation to the dense breast region of interest. 

• Designed and built a prototype secondary collimator for achieving automated spot 
collimation with the biopsy x-ray system. 

• Designed and built a prototype device for restraining the breast during the changeover from 
the full-field compression paddle to the spot compression paddle. 

• Designed and built a prototype x-y translation device for manually positioning the spot 
compression paddle at a desired location. 

• Performed spot collimation experiment with compressible breast phantom on a GE full-field 
digital mammography system and evaluated degree of improvement afforded by spot 
collimation alone on such a system. 

• Performed spot collimation and compression experiment with a compressible breast phantom 
on the GE Mi-field digital mammography system and evaluated improvement due to the 
combined spot collimation and compression. 
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(7) REPORTABLE OUTCOMES 

Manuscripts 
Zhou C, Chan HP, Petrick N, Helvie MA, Goodsitt MM, Sahiner B, Hadjiiski LM. Computerized 
image analysis: Estimation of breast density on mammograms. Medical Physics (submitted) 

Abstracts and Presentations 
Goodsitt MM, Chan HP, Huang H, Zhou C. Automated spot mammography for improved imaging 
of dense breasts. Accepted for presentation at the 86th Scientific Assembly and Annual Meeting 
of the Radiological Society of North America in Chicago, IL, November 26-December 1,2000 
(Abstract to be published in Radiology) 

(8) CONCLUSIONS 

Much groundbreaking work towards the development of a practical automated spot collimation 
and compression system has been performed during the first year of this project. Computer 
programs with user-friendly graphics interfaces have been developed to: 1) enable manual 
outlining of suspicious dense breast regions in digitized mammograms, 2) compute rectangular 
collimator blade positions for automated spot collimation to the outlined suspicious regions, and 
3) set manual gray level thresholds for the determination of the suspicious regions.   A radiologist 
has reviewed these programs and recommended changes for the füll study that will be conducted 
during the second year of the project. Prototypes of a secondary spot collimator, breast-restraining 
device, and spot collimator positioner have been designed, built, and evaluated.   The knowledge 
gained will be used to design and build improved devices during the second year of the project. 
The unanticipated purchase by our hospital of a clinical full-field digital mammography system 
has afforded us the opportunity to evaluate the automated spot collimation and compression 
concept on a state-of-the-art x-ray mammography unit. Preliminary tests with this system 
involving imaging compressible breast phantoms indicate the improvement in image quality 
afforded by spot collimation alone may be less than anticipated when a wide-dynamic range 
digital detector is used; however, the improvement for combined spot collimation and 
compression can be significant. These are subjective assessments on a very limited set of 
simulated cases. Additional quantitative studies will be performed to further evaluate these 
effects. The full-field digital mammography system has many advantages over the biopsy CR 
detector system that was originally planned for our project including greater quantum detection 
efficiency for superior image quality, faster image readout, and more optimum exposures through 
the use of sophisticated phototiming and automated x-ray technique factor selection. We believe 
adapting our automated spot collimation / compression technique to the FFDM will provide us 
with a head start in assessing the true capabilities of this method. We have therefore changed our 
plans and will develop an add-on automated spot collimation system for the FFDM rather than the 
biopsy/CR system. Devices to accomplish this task will be designed and manufactured during the 
second year of this project. The FFDM is also an excellent platform for developing spot 
stereomammography. Stereomammography allows viewers to visualize the 3-D nature of the 
breast tissue, thereby enabling them to better appreciate the true nature of the structures. 
Overlapping tissues appear separated, the borders of lesions are better demarcated, and the 
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positions of lesions and microcalcifications are better realized. We have been investigating the 
capabilities of digital stereomammography in another project funded by the U.S. Army Medical 
Research and Materiel Command (Grant No. DAMD 17-98-1-8210). Adapting this technique to 
spot mammography is a logical offshoot of this work. The availability of the FFDM makes the 
development of a practical stereomammography spot system possible earlier than had been 
anticipated in our original study design. We have therefore decided to pursue this development 
one year ahead of schedule, starting in the second year rather than the third. 

So What 
A key limitation of conventional x-ray mammography is the inability to optimally image regions 
of dense tissue. The new full-field digital mammography systems may reduce but not eliminate 
this problem. We recently have had the opportunity to perform preliminary tests with such a unit. 
This unit employs a digital detector that has improved quantum detection efficiency and a more 
linear response than film-screen, both of which result in better imaging of dense tissue. In 
addition it utilizes a very sophisticated phototiming method that determines the exposure time and 
the x-ray technique factors from the signals detected in the densest region of the image, which 
improve dense tissue penetration. Still, the imaging of lesions in dense tissues with such systems 
will not be completely optimal. The system we are developing adds 3 features that will further 
optimize the imaging of such lesions. First, there will be automated collimation to the dense 
region. This will reduce the amount of x-ray scatter that strikes the detector thereby reducing 
image noise. It should also restrict the region in which the automated technique and phototiming 
is determined, which may improve the penetration of this region. Second, there will be automated 
spot compression in the dense region. This will reduce the thickness of the tissue x-rayed, which 
reduces x-ray scatter and reduces x-ray beam hardening, both of which should improve the 
contrast in the image. In addition, spot compression causes tissues to spread out, which may 
separate the lesion from overlapping tissues, thereby improving the conspicuity of the lesion. 
Third, spot stereomammography can be performed in the dense region. This will produce a 3-D 
image of the lesion allowing the viewer to see a separation between lesions and overlapping 
tissues even if spot compression did not fully accomplish this task.   It also permits improved 
visualization of the locations of lesions and microcalcifications and of lesion borders, all of which 
are important to the radiologists in making their diagnoses.   Finally, all of the techniques are 
performed with the breast restrained to be in the same location as in the full-field mammogram, 
eliminating the guesswork associated with breast re-positioning in conventional spot compression 
mammography. Thus, in theory, the automated spot collimation, compression, 
stereomammography technique should be of great benefit. The challenge will be to develop a 
convenient and practical system, which is the goal of our project. 
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ABSTRACT 

An automated image analysis tool is being developed for estimation of mammographic breast 

density.    This tool may be useful for risk estimation or for monitoring breast density change in 

prevention or intervention programs. In this preliminary study, a data set of 4-view mammograms from 

65 patients was used to evaluate our approach.  The mammograms were digitized using a laser scanner 

and the resolution was reduced to a pixel size of 0.8 mm x 0.8 mm.     Breast density analysis was 

performed in three stages.  First, the breast region was segmented from the surrounding background by 

an automated breast boundary-tracking algorithm. Second, an adaptive dynamic range compression 

technique was applied to the breast image to reduce the range of the gray level distribution in the low 

frequency background and to enhance the differences in the characteristic features of the gray level 

histogram for breasts of different densities. Third, rule-based classification was used to classify the 

breast images into four classes according to the characteristic features of their gray level histogram. For 

each image, a gray level threshold was automatically determined to segment the dense tissue from the 

breast region. The area of segmented dense tissue as a percentage of the breast area was then estimated. 

An observer performance study was performed in which five radiologists provided visual estimates of 

the percent dense area as well as manually segmenting the dense area by interactive thresholding for 

each mammogram.   A "true" percent dense area for each mammogram was obtained by averaging the 

manually segmented area over the five radiologists.  We found that the histograms of 6% (8 CC and 8 

MLO views) of the breast regions did not exhibit the typical characteristic features of the four classes 

and were misclassified by the computer, resulting in poor segmentation of the dense region. For the 

images with correct classification, the correlation between the computer-estimated percent dense area 

and the "truth" was 0.94 and 0.91, respectively for CC and MLO views, with mean bias of less than 2%. 

The correlation of the radiologists'visual estimates with the "truth" ranged from 0.90 to 0.95 with mean 

biases ranging from 0.1% to 11%, depending on the radiologists. The results demonstrate the feasibility 

of estimating mammographic breast density using computer vision techniques and its potential to 



improve the accuracy and reproducibility of breast density estimation in comparison with the subjective 

visual assessment by radiologists. 

Keywords: Mammography,   computer-aided   diagnosis,   breast   density,   breast   cancer   risk,   image 

segmentation, thresholding. 



1.   INTRODUCTION 

Breast cancer is one of the leading causes for cancer mortality among women1. One in every 

eight women will develop breast cancer at some point in their lives. The most successful method for 

early detection of breast cancer is screening mammography. Currently, mammograms are analyzed 

visually by radiologists. Because of the subjective nature of visual analysis, qualitative responses may 

vary from radiologist to radiologist. Therefore, a computerized method for analyzing mammographic 

features would be useful as a supplement to the radiologist's assessment. Previous research efforts in 

computer-aided diagnosis (CAD) for breast cancer detection mainly concentrated on detection and 

characterization of masses and microcalcifications on mammograms by using computer vision 

techniques 2. It has been demonstrated that an effective CAD algorithm can improve the diagnostic 

accuracy of breast cancer characterization on mammograms, which, in turn, may reduce unnecessary 

biopsies. In this work, we are studying the feasibility of developing a CAD system for analysis of breast 

density on mammograms. Studies have shown that there is a strong positive correlation between breast 

parenchymal density on mammograms and breast cancer risk 3"10. The relative risk is estimated to be 

about 4 to 6 times higher for women whose mammograms have parenchymal densities over 60% of the 

breast area, as compared to women with less than 5% of parenchymal densities. 

An important difference between breast density as a risk factor and most other risk factors is the 

fact that breast tissue density can be changed by dietary or hormonal interventions '> * 1> ^. Although 

there is no direct evidence that changes in mammographic breast densities will lead to changes in breast 

cancer risk, the strong correlation between breast density and breast cancer risk has prompted 

researchers to use mammographic density as an indicator for monitoring the effects of intervention as 

well as for studying breast cancer etiology ' ■> 12-14 



Different methods have been used for evaluation of mammographic breast density. Earlier 

studies used subjective visual assessment of the breast parenchyma primarily based on the four patterns 

described by Wolfe 3 (Nl is comprised entirely of fat, PI has up to 25% nodular densities, P2 has over 

25% nodular mammographic densities, DY contains extensive regions of homogeneous mammographic 

densities). The subjectivity in classifying the mammographic patterns introduced large variability in the 

risk estimation. Later studies used more quantitative estimates, such as planimetry, to measure the dense 

area in the breast manually outlined by radiologists on mammograms 4> 8. These studies indicate that 

the percentage (%) of mammographic densities relative to the breast area can predict breast cancer risk 

more accurately than a qualitative assessment of mammographic patterns. Warner et al 15 conducted a 

meta-analysis of the studies published between 1976 and 1990 to investigate the effect of different 

methods of classification on estimates of cancer risk. They found that the mammographic parenchymal 

pattern does correlate with breast cancer risk. The magnitude of the risk varies according to the method 

used to evaluate the mammograms. With the quantitative estimates of mammographic density, the 

difference in risk between the highest and the lowest risk category is substantial and is greater than the 

risks associated with most other risk factors for breast cancer. More recent studies used fractal texture 

and the shape of the gray level histogram ^ to quantify the parenchymal pattern or used interactive 

thresholding on digitized mammograms to segment the dense area 12, 16 jt was reported that the 

thresholding method provided a higher risk value than the texture measure or the histogram shape 1'. 

Other researchers have attempted to calculate a breast density index to model radiologists'perception 1°. 

In clinical practice, radiologists routinely estimate the breast density on mammograms by using 

the BI-RADS lexicon as recommended by the American College of Radiology 19 in order to provide a 

reference for mammographic sensitivity. Because of the lack of a quantitative method for breast density 
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estimation, researchers often use the BI-RADS rating for monitoring responses to preventive or 

interventional treatment and the associated changes in breast cancer risk 20. We have found that there is 

0 1     0 0 
a large interobserver variability in the BI-RADS ratings among experienced mammographers- < —. An 

automated and quantitative estimation, as investigated in this study, will provide not only an efficient 

mean's to measure mammographic density, but also a reproducible estimate that will reduce the inter- 

and intraobserver variability of mammographic density measurements. This image analysis tool will 

therefore allow researchers to study more definitively the relationship of mammographic density to 

breast cancer risk, detection, prognosis, and mammographic sensitivity, and to better monitor the 

response of a patient to preventive or interventional treatment of breast cancers. 

2.   MATERIALS AND METHODS 

2.1. Database 

A data set consisting of 260 mammograms of 65 patients was used for development of the 

histogram analysis method in this study. Each case contains the craniocaudal (CC) view and the 

mediolateral oblique (MLO) view of both breasts of the patient. The mammograms were selected from 

the files of patients in the Radiology Department at the University of Michigan. The mammograms 

were acquired with mammography systems approved by the Mammography Quality Standards Act 

(MQSA) and were digitized with a LUMISYS 85 laser film scanner with a pixel size of 50 |j.m X 50 jam 

and 4096 gray levels. The gray levels are linearly proportional to optical densities (O.D.) from 0.1 to 

greater than 3 O.D. units. The nominal O.D. range of the scanner is 0-4 with large pixel values in the 

digitized mammograms corresponding to low O.D. The full resolution mammograms were first 

smoothed with a 16 X 16 box filter and subsampled by a factor of 16, resulting in 800 |im X 800 |lm 

images of approximately 225 X 300 pixels in size. 
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2.2. Breast segmentation and image enhancement 

The breast image is first segmented from the surrounding image background by boundary 

detection. The detected boundary separated the breast from other background features such as the 

directly exposed area, patient identification information, and lead markers. The density analysis was 

performed only within the breast region. An automated breast boundary tracking technique developed 

previously 23> 24 was modified to improve its performance. Briefly, the technique used a gradient- 

based method to search for the breast boundary. The background of the image was estimated initially by 

searching for the largest background peak from the gray level histogram of the image. After subtracting 

this background level from the breast region, a simple edge was found by a line-by-line gradient analysis 

from the top to the bottom of the image. The criterion used in detecting the edge points was the 

steepness of the gradient of four adjacent pixels along the horizontal direction. The steeper the gradient, 

the greater the likelihood that an edge existed at that corresponding image point. The simple edge served 

as a starting point for a more accurate tracking algorithm that followed. The tracking of the breast 

boundary started from approximately the middle of the breast image and moved upward and downward 

along the boundary. The direction to search for a new edge point was guided by the previous edge 

points. The edge location was again determined by searching for the maximum gradient along the gray 

level profile normal to the tracking direction. Since the boundary tracking was guided by the simple 

edge and the previously detected edge points, it could steer around the breast boundary and was less 

prone to diversion by noise and artifacts. The unexposed film area around the film edges was detected 

automatically. After the breast boundary was found, a region growing algorithm was used to fill the 

enclosed breast region. The result was a binary map that distinguished the breast region from the 



background areas.  An example of the tracked breast boundary and the breast binary map is shown in 

Fig. l(a)-(c). 

For the MLO view mammograms, an additional step has to be performed for segmentation of the 

pectoral muscle. The initial edge in the pectoral region was found as the maximum gradient point by a 

line-by-line gradient analysis from the chest wall to the breast boundary. The false pectoral muscle edge 

points were discarded by an edge validation process. First, a straight line was fitted to the initial edge 

points, and the points that did not lie close to the fitted line were removed. Second, the remaining edge 

points that were connected were identified by an 8-connectivity criterion. An edge segment was 

removed if its direction was inconsistent with the pectoral edge direction relative to the breast image. 

Finally, a second order curve was fitted to the remaining edge points to separate the pectoral muscle 

from the breast region. The pixels in the pectoral muscle region were excluded from the histogram 

analysis and breast area calculation. Figure 1 shows the pectoral muscle trimming result for an MLO 

view mammogram. 

To facilitate histogram analysis, a dynamic range compression method was developed to reduce 

the gray level range of the histograms. With our digitization, the gray levels of the dense tissue are 

higher than those of the adipose tissue. Because of variations in exposure condition and breast thickness 

near the periphery, the gray level distribution corresponding to the breast parenchymal pattern is 

superimposed on a low frequency background that mainly represents the global variations in exposure. 

This low frequency background distorts the characteristic features of the histogram due to the density 

pattern. To reduce the distortion, an adaptive dynamic range compression technique was applied to the 

breast image. For a given breast image, F(x, v), which contains low-frequency background and higher- 

frequency breast tissue structures, a smoothed image, FB (x, v), was obtained by applying a large-scale 



box filter to  F(x,y)  to remove the high frequency components while retaining the low frequency 

components. The image FB (x, y) was then compressed by a scale factor k: 

Fc(x,y) = kFB(x,y) (D 

To reconstruct the high frequency components, Fc (x, y), was subtracted from a constant gray level G, 

and added to the original image, F(x, y): 

FD(x,y) = G-Fc(x,y) (2) 

FE(x,y) = FD(x,y) + F(x,y) (3) 

Histogram analysis was applied to the dynamic-range-compressed image FE (x, y). Figure 2 

shows an example of the resulting images and gray level histograms obtained from this procedure, 

where the size of box filter is 35 X 35, the scale factor k is 0.5, and the constant gray level G is the 

maximum gray level of the compressed image Fc (x, y). 

2.3. Breast density segmentation and estimation 

A rule-based threshold technique was developed to segment the dense areas from the breast 

background. The histogram of the breast region on the dynamic-range-compressed mammogram was 

generated and smoothed. The histograms of these images in the database were analyzed to formulate an 

automatic thresholding routine. The histograms were grouped into four classes based on the 

characteristic shapes of their histograms. It was observed that the grouping corresponded approximately 

to the four BI-RADS breast density ratings: Class I corresponded to breasts of almost entirely fat, Class 

II corresponded to scattered fibroglandular densities, Class III corresponded to heterogeneously dense, 

and Class IV corresponded to extremely dense breasts.  Examples of typical histograms for these four 



classes are shown in Fig. 3. The histograms seemed to follow two basic patterns. In one pattern, there 

was only one dominant peak, which represented most of the breast structures in the breast region. In the 

other pattern, in addition to a large peak in the histogram, there was one or two smaller peaks on the 

right or left side of the large peak. In a majority of the cases, the smaller peak was distinguishable from 

the large one when the random fluctuation on the histogram was smoothed. 

2.3.1. Peak detection and feature description 

The gray level histogram within the breast area was generated and normalized, and passed 

through an averaging window to smooth out the random fluctuations. The second derivative of every 

point on the histogram curve was computed. An example of the histogram and its second derivative 

curve are shown in Fig. 4. The zero crossing locations were detected by scanning for the positive-to- 

negative and negative-to-positive changes on the latter curve. If the second derivative was negative 

between two zero crossing points, it indicated that a peak existed between these two points on the 

histogram. Normally, as shown in Fig. 4, a peak included the peak point PQ and two valley points Pt and 

P2 located on the two sides of the peak point. The peak point P0 was determined by searching for the 

maximum histogram value between the zero crossing points Z2 and Z3, and the P] and P2 points were 

obtained by searching for the point with minimum histogram value between zero crossing points Z/, Z2 

and Zjf, Z4, respectively. 

The following peak features can be defined by peak point P0 and valley points Pt and P2: 

Energy: E = ^f{i)*f{i) (4) 
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1 p" 
Left-side Energy: EL = - £ /(/)*/(/) (5) 

Right-side Energy:      ER = — £/(/)*/(/) (6) 
^ i=/o 

Likelihood: L = £/£' (7) 

where /(.) is the histogram curve, A is the total energy of the entire histogram and A - ^ /(/) * /(/), A' 

is the maximum gray level of the histogram. E' is the energy calculated by approximating the 

histogram in the interval [Pi,P2] using two straight lines, PXPQ and P0P2. The energy E of the peak is 

used to compare the sizes of the peaks on the histogram, higher energy means bigger size of the peak. 

EL and ER split the energy E into two parts from the peak point for calculating the ratio of the energy 

in these two parts. The likelihood L describes how close is the real peak to the triangle represented by 

the three points P0, Pt and P2. 

2.3.2. Rule based histogram classification 

A rule-based histogram classifier was developed to classify the gray level histogram of the breast 

area into four classes. As shown in Fig. 3, a typical Class I breast is almost entirely fat, it has a single 

narrow peak on the histogram. Class II has scattered fibroglandular densities, it has two peaks, other 

than the tail part on the left, on the histogram, with the smaller peak on the right of the bigger one. Class 

III is heterogeneously dense, it also has two peaks, but the smaller peak is on the left of the bigger one. 

Class IV is extremely dense, which has a single dominant peak on the histogram, but it is wider 

compared with the peak in the Class I histogram, and a second small peak sometimes occurs to the left 

of the main peak. 
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The classification is performed in two steps. In the first step, the computer determines whether 

there is only one single peak in the histogram. The biggest peak (main peak) PM and its location are 

detected by comparing the energy of the peaks on the histogram. The single peak feature is mainly 

determined by the energy under the main peak. If the histogram is found to have a single-peak pattern, 

in general, a narrow peak corresponds to very fatty breast (Class I), and a wider peak corresponds to 

very dense breast (Class IV). However, in some cases, the histogram of these two classes is very 

similar, as discussed below (Fig. 9), and it is difficult to distinguish them by their gray level histogram 

distributions. Two additional image features were analyzed to classify very fatty and very dense breasts. 

One feature is the gray level standard deviation (Std) in the entire breast area, defined as: 

Std 
f V/2 

77 X  £(/(*,?)-/(*,y)): 
N 

V XEMAP \EMAP 

(8) 

where MAP is the breast binary map region, TV is the pixel numbers within MAP. Another feature is the 

number of single pixels and single pixel-size holes (NSH) counted in the breast area of a segmented 

binary image using the biggest histogram peak point PM as a threshold. For a very fatty mammogram, 

the breast mainly consist of a fatty background with some fibrous structures and fibroglandular tissue 

scattered in the breast area. The NSH value is bigger, and STD is smaller, compared with a 

mammogram of a very dense breast. 

In the second step, if the histogram is found to have more than one peak, decision rules are used 

to decide if the second major peak is on the left side or on the right side of PM by the features E, EL, En, 

and L, and the relative position of the two peaks. If the second major peak is on the right, then the 

histogram is classified to be Class II; otherwise, it is classified to be Class III. 

23.3. Gray level thresholding 
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Gray level thresholding is essentially a pixel classification problem. Its objective is to classify 

the pixels of a given image into two classes: one includes pixels with gray values that are below or equal 

to a certain threshold, the other includes those with gray values above the threshold. Thresholding is a 

popular tool for image segmentation, a variety of techniques have been proposed over the years. In our 

study, two threshold selection methods are used: one is the Discriminant Analysis (DA) method ~D and 

the other is the Maximum Entropy Principle (MEP) based method 26. The DA method assumes that the 

image gray levels can be classified into two classes by a threshold. To estimate the threshold, a 

discriminant criterion based on the within-class variance and between-class variance is introduced. An 

optimal threshold is selected by the discriminant criterion to maximize the separability of the resultant 

classes in terms of gray levels. This method is well-suited for the cases where the gray level histogram is 

bimodal. In an ideal situation, the histogram has a deep and sharp valley between the two peaks 

representing objects and background, respectively, and the optimum corresponds to the gray level at the 

bottom of this valley. A more detailed description of the DA method can be found in Appendix A. 

For the MEP method, the optimal threshold value is determined by maximizing the a posteriori 

entropy subject to certain inequality constraints  that  are derived by means  of special  measures 

characterizing the uniformity and the shape of the regions in the image. As is well-known 27\ the MEP 

can serve as a criterion to select a priori probability distributions when very little is known about the 

probability distribution. Compared with the DA method, MEP can provide a better thresholding result if 

the gray level histogram does not have a bimodal distribution. A more detailed description of the MEP 

method can be found in Appendix B. 
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The gray level histograms of the mammograms in our study are very complex, the histogram 

may be unimodal, bimodal, or multi-modal. It is difficult to select an appropriate threshold by one 

general threshold selection method. Therefore, we combined both the DA and the MEP methods, to 

select a threshold according to the characteristic features of the histogram that has been classified into 

one of the four classes. Suppose/(g) is the gray level histogram of the breast area. Let 

T = Method(f(g)\gl <g<g2) represent the threshold, T, that is selected by use of Method in the 

interval [g,,g,]of the histogramf(g), where Method can be either the DA or MEP method. The 

settings of the interval [gl, g2] for the four classes are discussed below and shown in Fig. 3. 

Class I: The histogram is unimodal so that the threshold is selected as: 

T = MEP(f(g)\g]<g<g2). 

where, g, is the main peak point, g2 is the valley point on the right side of main peak. 

Class II: The histogram is not unimodal and the histogram is classified as Class II, the threshold is 

selected by averaging two thresholds that are computed in two different intervals of the histogram by the 

DA method: 

Tl=DA(f(g)\g>g]), 

T2=DA(f(g)\g>g2), 

T = (T]+T2)/2, 

where g, is the valley on the left of the main peak , g2 is the main peak point. 

Class III: The histogram is not unimodal, there are two possibilities in the histogram distribution: there 

is a valley between the main peak and its left side peak, as shown in Fig. 3, or no valley exists between 
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the main peak and its left side peak. In two different intervals of the histogram, two thresholds are 

computed as: 

7, =DA{f(g)\gl <g<g2), 

T2=DA(f(g)\g\<g<g2), 

where, g] is the left valley point of the left-side peak (Pm ) of the main peak, g\ is the peak point of 

Pm , andg2 is right valley point of the main peak.   If there is an obvious valley, T = (7, +7\)/2 . 

otherwise T = T:. 

Class IV: Since the histogram is unimodal, the threshold is computed by the MEP method, 

T = MEP(f(g) \gl < g < g2), where, g, is the left valley point of the main peak, g2 is the main peak 

point. 

2.4. Observer Study 

In order to compare the accuracy of the computer segmentation method with radiologists' 

manual segmentation, the data set of 65 patient cases with CC and MLO views of the two breasts, 

described above, were used in an observer study. A graphical interface was developed for displaying the 

mammograms and recording the observer's evaluation. The CC-view and MLO-view mammograms for 

a given breast were displayed side-by-side, a radiologist observer examined the mammograms and gave 

a BI-RADS rating and a visual estimation of the percent breast density with 10% increments. After the 

subjective evaluation, each view was displayed sequentially, together with the histogram of the 

dynamic-range-compressed image. The radiologist would interactively choose a threshold by moving a 

slider along the abscissas of the histogram plot. The segmented binary image, displayed side-by-side 

with the mammogram, would change instantaneously when the threshold was changed. The radiologist 
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could inspect if the segmented area corresponded to the dense area on the mammogram. Once the 

radiologist was satisfied with the segmentation of the dense area, the gray level threshold and the 

percent dense area derived from this threshold were recorded. The display then moved to the next view 

of the same breast for evaluation. The mammograms of the other breast for the same patient would then 

be displayed and evaluated in the same way. The entire process was repeated for each patient until all 

patients in the data set were evaluated. 

Five MQSA-approved radiologists participated in our observer study. To familiarize the 

radiologists with the experiment and to assist them in their visual estimation of the percent breast 

density, we had them trained on a separate set of 25 patient cases prior to the evaluation of the actual 

data set. During the training session, the computer displayed the percent breast dense area to the 

radiologist, which was obtained by the radiologist's interactive thresholding of the image. The 

radiologist could then compare the manually segmented percentage with their visually assessed percent 

density for the image. This feedback helped "calibrate" the radiologists' visual estimates of the percent 

dense breast area. The percent dense area obtained by interactive thresholding was not displayed during 

the actual study. 

3.   RESULTS 

An example of a typical mammogram from each of the four classes and its corresponding 

enhanced image, its histogram, the selected threshold and the segmented image are shown in Fig. 5(a)- 

(d), respectively. 

The average percent breast density obtained from manual segmentation by the five trained 

radiologists for each mammogram was used as the "true standard" of the percent breast density for that 
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mammogram. The breast region was segmented by the breast boundary tracking technique, and the 

pectoral muscle was trimmed for the MLO-view mammograms. The breast boundary was accurately 

tracked on 92.3% (240/260) of the mammograms, and the pectoral muscle was correctly trimmed on 

74.6% (97/130) of the MLO views. The histograms of 6% (8 CC views and 8 MLO views) of the breast 

regions did not exhibit the typical characteristic features of the four classes and were misclassified by 

the computer, resulting in poor segmentation of the dense region. 

Figure 6 shows a comparison of the percent breast density visually estimated by radiologists 

against the true standard for the 94% of the 260 mammograms that were classified correctly by the 

computer. Table I summarizes the comparison of the radiologists' visual estimates with the true 

standard. The "difference" between the estimated % breast density and the true standard was calculated 

for each case, and the mean and the standard deviation of this difference over all cases were estimated 

for each radiologist and shown in the table. Therefore, the mean difference was the average bias of the 

estimated % breast density from the true standard over all images in the data set. It can be seen that 

almost all radiologists had a positive bias, on average, when they visually estimated mammographic 

density, except for Radiologist 5 who had a small negative average bias on the CC view reading. For a 

given radiologist, the over-estimation increased as the breast density increased. Although the correlation 

coefficients were high, ranging from 0.90 to 0.95, the deviations from the diagonal line were systematic. 

The average bias from the true standard varied from less than 1% to 11%, depending on the radiologist. 

The root-mean-square (RMS) errors of the five radiologists relative to the true standard ranged from 

7.5% to 16.3%. 

Figure 7 shows the comparison of the percent breast density between the computer segmentation 

and the true standard for the 94% of mammograms whose histograms were considered to be correctly 

classified.  There was a trend of over-estimation in the very fatty breasts.   In the medium dense range, 
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the variances from the true standard were high. Some images had a large deviation from the diagonal 

line, indicating that the threshold was incorrectly determined. Table II summarizes the comparison 

between the computer performance and the true standard. For the CC views with correct histogram 

classification, the correlation between the computer-estimated percent dense area and the true percent 

breast density was 0.94, and between the computer and the radiologists' average visual estimate was 

0.87 (not plotted). These correlation coefficients were 0.91 and 0.82, respectively, for the MLO-views 

with correct classification. Although the correlation coefficients of the computer segmentation with the 

true standard were not better than those of the visual estimates, the average biases of the computer 

segmentation from the true standard were less than 2%, which were substantially less than those of 

visual estimates (Table I). This indicates that computerized segmentation is a good alternative to 

manual segmentation although variances of the automated method will need to be further reduced. The 

RMS errors of the computer segmentation were also less than those of the radiologists' visual estimates, 

at 6.1% and 7.2%, respectively, for CC view and MLO view, when the histograms were correctly 

classified. The biases and RMS errors for the different subsets of images are also shown in Table II. It 

can be seen that correct histogram classification was the most important factor in reducing the biases and 

the RMS errors. The contributions by breast boundary detection and pectoral muscle segmentation were 

minor, on average, for improving the estimation of the percent dense breast area. 

Figure 8 shows the comparison of the individual radiologists' manual segmentation against the 

true standard.   For CC views, the RMS difference in the percent breast density between an individual 

radiologist's manual segmentation and the true standard varied from 2.9% to 5.9% among the five 

radiologists. For MLO views, the RMS difference varied from 2.8% to 6.2%. The average biases of the 

five radiologists ranged from -2.8% to 2.2% for the CC views and from -3.1% to 3.0% for the MLO 

views.  The maximum biases of the five radiologists varied from 4.4% to 22.6% for the CC views and 

from 5.2% to 23% for the MLO views. 
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The five radiologists provided BI-RADS density ratings for each breast. Although the BI-RADS 

ratings exhibited large inter-observer variations 21. it is interesting to compare the computer's histogram 

classification with the BI-RADS ratings. Since there were 260 images, each with 5 radiologists' ratings, 

there were a total of 1300 rating comparisons. The comparison of the computer and the radiologists' BI- 

RADS ratings is shown in Table III. It was found that 87.4% of Class I classification have BI-RADS 

ratings 1 or 2, 92.0% of Class II classifications have density ratings 2 or 3, 83.4% of Class III 

classifications have density ratings 3 or 4, and 57.1% of Class IV classifications have density rating 4. 

More detailed analysis of the variability of radiologists' BI-RADS ratings was discussed by Martin et 

al.22 

4.   DISCUSSION 

Radiologists routinely estimate mammographic breast density using the four BI-RADS 

categories. In studies that require breast density estimation, radiologists' visual estimates of 

mammographic density were often used as the density measure. Our observer study indicates that 

interobserver variation between the BI-RADS ratings of five experienced radiologists ranged from -1 to 

+ 1. The subjectively estimated percent dense area can deviate from the true standard by as much as 

40%, as shown in Fig. 6. These results indicate the need to develop an objective method for estimation 

of mammographic breast density in order to improve the accuracy and reproducibility of the estimation. 

A computerized image analysis method for mammographic breast density estimation will be a useful 

tool for study of breast cancer risk factors and for monitoring the change of breast cancer risk with 

preventive or interventional treatments. 
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In this study, we used the average of the percent breast area obtained with interactive 

thresholding by five experienced radiologists as the true standard. The gray level thresholding method 

used in this study could achieve a reasonable segmentation of the dense areas on the mammogram 

because the image was preprocessed with dynamic range compression. The image-based analysis oi 

breast density will not provide the actual percentage of fibroglandular tissue in the breast volume. 

However, the previous studies that established the correlation between breast density and breast cancer 

risk were all based on mammographic density. This indicated that mammographic density is a 

sufficiently sensitive marker for breast cancer risk, although it may be less accurate than volumetric 

density. Actual measurement of the percentage of fibroglandular tissue volume in the breast, for 

example, by x-ray penetration with correction for scatter and beam hardening, is difficult because it 

requires accurate x-ray sensitometry or phantom calibration for each image. These requirements will 

limit its use to a few laboratories that have specialized equipment and expert physicists. Magnetic 

resonance breast imaging can also provide volume measurement of dense tissue but it is expensive and 

not easily accessible. It can be expected that estimation of mammographic breast density by a 

computerized image analysis method will be a more practical and viable approach, especially when 

direct digital mammography becomes more widely used in the future. 

Our preliminary study indicates that breast density estimation can be performed automatically 

and accurately (Fig. 7). Although the accuracy of our current algorithm still needs to be improved, it 

can be seen that the computer segmentation can provide an estimate of the percent breast density with a 

very small bias (Table II). More importantly, computer segmentation will be more reproducible and 

consistent than visual estimates. This will improve the sensitivity of studies that depend on evaluation 

of the change in mammographic density over time or before and after a certain treatment. 
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Successful segmentation of dense tissue depends strongly on whether a mammogram can be 

classified correctly into a proper class. A successful classification will likely result in the selection of a 

near optimal threshold. Conversely, if a mammogram is classified into a wrong class, the threshold will 

be selected incorrectly.   For the mammograms of very fatty breasts, the gray level histogram has the 

characteristics of Class I which contains one large single peak.  These histograms can be distinguished 

relatively easily from most of the other classes of histograms if those histograms exhibit the typical 

features.  For mammograms  of BI-RADS  category 2  or 3,  there  are  scattered  fibroglandular or 

heterogeneously densities in the breast. A small peak may be located on the left or on the right, or on 

both sides of the main peak on the histogram. The histogram could be classified into Class I if the small 

peak is not large enough and is not detected as a second peak.   Otherwise, it would be classified into 

Class II or Class III, depending on the location of that small peak relative to the main peak of the 

histogram.   For the two-peak pattern histogram, the DA threshold selection method is robust if there is 

an obvious valley between the two peaks.    If the valley is flat or not obvious, averaging the two 

thresholds obtained by the DA method in two different intervals, as designed for this study, can reduce 

the chance of calculating an incorrect threshold that differs greatly from the optimum, but it also reduces 

the chance of finding the optimal threshold.   Overall, the rules designed for classification of the two- 

peak patterns seem to perform consistently well for this data set.   One of the difficult situations is to 

distinguish between Class I and Class IV, when the histogram of a very dense breast mimics that of a 

very fatty breast, as shown in Fig. 9.  This image was correctly classified with the additional features, 

STD and NSH.  However, there were other cases that failed in spite of the additional criteria. The large 

difference in the optimal threshold locations between these two classes will lead to a large error in the 

estimated percent breast density if the histogram is misclassified.   Further study is needed to more 

accurately distinguish these two classes. 
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The dynamic range reduction technique reduces the variability of the gray level histograms and 

enhances their characteristics. This pre-processing facilitates the classification of the image into the 

correct class. There are many image smoothing techniques published in the literature. Low pass filtering 

with a box filter is the simplest choice. The effectiveness of background correction with a box filtered 

image depends on the box size. We found that a 35 X 35-pixel filter is a good balance between 

computation time and the capability to remove the high frequency components. The subtraction of the 

low-pass filtered image from the original image is a form of unsharp masking. The breast boundary is 

generally enhanced as shown in Figure 2(e). The pixels at the enhanced breast boundary contribute a 

small peak to the left tail of the gray level histogram of the breast area. Moreover, if dense tissue is 

present close to the breast boundary, it may not be segmented correctly due to intensity reduction. Other 

low frequency estimation techniques such as wavelet decomposition will be investigated in future 

studies. 

In this feasibility study, we used a small data set of mammograms to develop a rule-based 

classifier for the histogram analysis. Although a large fraction of the histograms manifest characteristic 

features that can be grouped into four classes, corresponding approximately to the four BI-RADS breast 

density ratings, there are many exceptions. One such example is shown in Fig. 9. This causes 

misclassification and incorrect thresholding by the histogram classifier. It will be necessary to 

investigate if other classification strategies can be more effective than a rule-based method. More 

importantly, the performance of the computer classifier will have to be improved by training with a 

larger data set and its generalizability evaluated with unknown cases. 

5.   CONCLUSION 
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We are developing an image analysis method for automated segmentation of the dense area from 

mammograms and estimation of the percent mammographic density. Our preliminary study indicates 

the feasibility of our approach. The computer-estimated mammographic breast density correlate closely 

with the average manual segmentation by five experienced radiologists and the average bias is much less 

than that of the radiologists' visual estimation. We have found that correct classification of the 

histogram shapes is the most crucial step in our approach. The histograms of many mammograms have 

distinctive characteristics that can be recognized by a rule-based classifier. However, some histograms 

deviate from these rules and this can lead to misclassification. Further investigation will be needed to 

design more robust rules or classifiers to improve the classification accuracy. Despite these limitations, 

we have demonstrated in this preliminary study that estimation of mammographic density can be 

performed efficiently and accurately by the automated image analysis tool. The fully automated 

algorithm can provide an objective and reproducible quantitative estimation of mammographic breast 

density that is expected to be superior to subjective visual assessment and comparable to manual 

segmentation by radiologists. 
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APPENDIX 

A.        Gray-level thresholding - Discriminant Analysis (DA) Method 

Suppose the probability of the gray level n-x in an image with L gray levels can be estimated as: 

L 

p.=niIN,       W = X"." (AJ) 

If the pixels in the image are classified into two classes C0 and C, by the threshold k, then the 

probabilities of class occurrence and the class mean levels are given by: 

«o=X Pi =w(k)' ^= X Pi =l -w(k) (A-2) 

;=1 i=k+\ 

k L ß  ~ U(k) 
ju0 = J>,. /co0 =ßi(k)/o)0, //, = X^//w> = I „,u. <A-3) 

,=1 i=k+] l     Ü)(K) 

where 

'. k k L 

co(k) = XZ7/ ' V(k) = X'A-   and ^ = X^ 
;=I 1=1 1=1 

are the zeroth- and the first-order cumulative moments of the histogram up to the kth level, and the total 

mean level of original image, respectively. 

The between-class variance is defined as 

a2
B{k) = co0(ju0 -ßT)

2 + &>,(//, -jUT)
2 

= ü)Q(O](MI-JU0)
2 (A.5) 

ljuTco(k)-ß(k)]2 

ü)(k)[l-ü)(k)] 

and the optimal threshold k* is given by: 

al (k*) = max crl(k). (A.6) 
\<k<L 
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B.        Gray-level thresholding - Maximum Entropy Principle (MEP) Method 

Suppose the probability of the gray level nt in an image with L gray levels can be estimated as: 

L 

After thresholding the image by threshold k, the a posteriori probability of the pixels with gray level 

value less than k is given by: 

F(*) = J>, (B.2) 
(=0 

And the a posteriori probability of all those pixels with values greater than or equal to k is l-F(k). Thus 

the Shannon entropy of the thresholded image is: 

H(F(k)) = -F(k) log F{k) - (1 - F{k)) log(l - F(k)) (B.3) 

The optimal threshold k maximizes H(F(k)). 
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Table I. Comparison of radiologists' visual estimate of mammographic breast density with the true 

standard. The "Difference" was defined as the difference between the estimated % breast density 

and the true standard for each case, and the mean and the standard deviation of this difference are 

tabulated. 

Image Subsets     No. of     Radiologist     Correlation      RMS Mean Std. Dew of 

Images Error       Difference        Difference 

CC view: 

All 

Histogram 

correctly 

classified 

MLO view: 

130 

122 

Rad.l 

Rad.2 

Rad.3 

Rad.4 

Rad.5 

0.942 13.3% 6.9% 11.5% 

0.931 14.5% 9.8% 10.7% 

0.923 13.3% 6.3% 11.8% 

0.934 7.5% 2.9% 7.0% 

0.901 9.6% -1.4% 9.6% 

Rad.l 0.946 13.7% 7.2% 11.3% 

Rad.2 0.936 14.7% 10.3% 10.8% 

Rad.3 0.929 14.2% 6.7% 11.6% 

Rad.4 0.929 7.7% 3.1% 7.1% 

Rad.5 0.900 9.7% -1.3% 9.4% 

All 130 Rad.l 0.933 14.5% 8.3% 12.0% 

Rad.2 0.914 16.1% 11.2% 11.5% 

Rad.3 0.915 14.4% 7.7% 12.2% 

Rad.4 0.919 8.8% 4.3% 7.7% 

Rad.5 0.910 9.2% 0.1% 9.2% 

Rad.l 0.932 15.0% 8.3% 12.0% 

Rad.2 0.914 16.3% 10.9% 11.4% 

Rad.3 0.919 14.7% 7.8% 12.2% 

Rad.4 0.916 9.0% 4.3% 7.7% 

Rad.5 0.909 9.4% 0.3% 9.2% 

Histogram 

correctly 

classified 

122 
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Table II. Comparison of computer segmentation with the true standard. The "Difference'" was defined 

as the difference between the estimated % breast density and the true standard for each case, and the 

mean and the standard deviation of this difference are tabulated. 

Image Subsets No. of Correlation RMS Mean Std. Dev. of 

Images Error Difference Difference 

CC view: 

All 130 0.746 12.3% 1.3% 12.3% 

Boundary correctly tracked 120 0.780 11.4% 1.4% 11.4% 

Histogram correctly classified 122 0.943 6.1% 0.2% 6.2% 

Boundary & Histogram correctly 113 0.953 5.6% 0.8% 5.6% 

done 

MLO view: 

All 130 0.780 11.6% 1.9% 11.5% 

Boundary correctly tracked 120 0.766 11.9% 2.1% 11.7% 

Histogram correctly classified 122 0.914 7.2% 1.5% 7.1% 

Pectoral muscle correctly trimmed 97 0.733 11.6% 1.6% 11.67c 

Boundary & Histogram correctly 112 0.912 7.2% 1.7% 7.1% 

done 

Boundary, Histogram & Pectoral 

muscle correctly done 

83 0.891 7.1% 1.9% 6.8% 
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Table III. Comparison of computer classification and radiologists' BI-RADS breast density ratings. 

Computer BI-RADS      BI-RADS     BI-RADS     BI-RADS Total 

classification 12 3 4 

Class I 210 262 52 16 540 

Class II 0 92 184 24 300 

Class III 1 52 167 100 320 

Class IV 5 12 43 80 140 

Total 216 418 446 220 1300 
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FIGURE CAPTION 

Figure 1.   (a) A mammogram from our image database; (b) the image superimposed with the detected 

breast boundary and pectoral muscle boundary; (c) the binary map of the segmented breast 

region. 

Figure 2. (a) A typical mammogram from our image database; (b) the low frequency image FB (x, y) 

obtained by an 35 X 35 box filter; (c) the compressed image Fc (x, y); (d) the inverted image 

FD (x, y); (e) the enhanced image FE (x, y); (f) Gray level histogram within the breast region 

of the original image F(x, y); and (g) Gray level histogram of the breast region of the 

enhanced image FE (x, y). 

Figure 3.    Four typical classes of histograms and the setting of gray level interval [gi, g2] for threshold 

calculation. 

Figure 4. Gray level histogram (solid curve) and the second derivative (dot) curve. PQ is the peak 

point, P] and P2 are the valley points of the peak on the two sides of the peak point P0. Points 

Z/, Z2, Z3 and Z4 are zero crossing points on the second derivative curve, which are used for 

searching the points P0, P^ and P2. 

Figure 5.    Four classes of typical mammograms and corresponding enhanced and segmented image, 

histogram and threshold. 
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Figure 6. Comparison of percent breast density between five radiologists' visual estimates and the true 

standard. The dash line represents the linear regression of all data points on the plot, (a) CC 

view, (b) MLO view. 

Figure 7. Comparison of percent breast density between the computer segmentation and the true 

standard. The dash line represents the linear regression of the data on the plot, (a) CC view, 

(b) MLO view. 

Figure 8. Comparison of percent breast density obtained from the five radiologists' manual - 

segmentation with their average for the same mammograms. (a) CC view, (b) MLO view. 

Figure 9. The gray level histograms of two mammograms classified by radiologists as BI-RADS rating 

1 (upper mammogram) and BI-RADS rating 4 (lower mammogram). The shapes of the 

histograms are very similar and cannot be distinguished by our current histogram analysis 

method. These two examples were correctly classified with the additional STD and NSH 

criteria. 
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Figure 1.    (a) A mammogram from our image database; (b) the image superimposed with the detected 

breast boundary and pectoral muscle boundary; (c) the binary map of the segmented breast 

34 



:v«-^*-S*i  ■■'KM 

4000 

Figure 2. (a) A typical mammogram from our image database; (b) the low frequency image Fli(x,y) 

obtained by an 35 X 35 box filter; (c) the compressed image Fc (x, y); (d) the inverted image 

FD {x, y); (e) the enhanced image FF (x, v); (f) Gray level histogram within the breast region of 
the original image F(x, y); and (g) Gray level histogram of the breast region of the enhanced 
image FE(x,y). 
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Figure 3. Four typical classes of histograms and the setting of gray level interval [gi, g2] for threshold 

calculation. 
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Figure 4. Gray level histogram (solid curve) and the second derivative (dot) curve. P0 is the peak 

point, /> and P2 are the valley points of the peak on the two sides of the peak point P0 . Points 

Z/, Zi, Z; and Z4 are zero crossing points on the second derivative curve, which are used for 

searching the points P0, Pt and P2. 
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Figure 5. Four classes of typical mammograms and corresponding enhanced and segmented image, 

histogram and threshold. 
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Figure 6. Comparison of percent breast density between five radiologists' visual estimates and the true 

standard. The dash line represents the linear regression of all data points on the plot, (a) CC 

view, (b) MLO view. 
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Figure 7. Comparison of percent breast density between the computer segmentation and the true 

standard. The dash line represents the linear regression of the data on the plot, (a) CC view, (b) 

MLO view. 
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Figure 8.        Comparison of percent breast density obtained from the five radiologists' manual 

segmentation with their average for the same mammograms. (a) CC view, (b) MLO view. 
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Figure 9. The gray level histograms of two mammograms classified by radiologists as BI-RADS rating 1 

(upper mammogram) and BI-RADS rating 4 (lower mammogram). The shapes of the histograms 

are very similar and cannot be distinguished by our current histogram analysis method. These 

two examples were correctly classified with the additional STD and NSH criteria. 

42 



1 

ABSTRACT SUBMISSION FOR RSNA 2000 
86th Scientific Assembly and Annual Meeting 

The corresponding author (to receive confirmation of receipt and acceptance/rejection notice) is: 
Mitchell M. Goodsitt Ph.D. 

Radiology 
University of Michigan 
Room B1F510C, Box 0030 
1500 East Medical Center Drive 
Ann Arbor, MI 48109-0030 USA 
Tel: 734-936-7474 
Fax: 734-936-7948 
goodsitt@umich..edu 

Presentation Type: Scientific Presentation 
Category: Physics: Diagnostic X-ray 
Keyword l:Breast radiography, technology 
Keyword 2:Physics 

Work supported by grant from RSNA: No 
Work presented previously: No 
Paper submitted for publication: No 
Principal Investigator: Other 
Presentation Preference: Scientific Paper 

Authors 
1 Mitchell M. Goodsitt Ph.D.    Phone: 734-936-7474 Fax 734-936-7948 

SSN: MMfl|E-Mail: goodsitt@umich..edu Member Number:       Conflict: No 
2 Heang-Ping Chan Ph.D.    Phone: 734-936-4357 Fax 734-936-7948 

SSN: E-Mail: chanhp@umich.edu Member Number: Conflict: No 
3 Hao Huang MS    Phone: 734-647-8556 Fax 

SSN: E-Mail: haohuang@umich.edu Member Number: Conflict: No 
4 Chuan Zhou Ph.D.    Phone:734-647-8553 Fax 

SSN: E-Mail: chuan@umich.edu Member Number: Conflict: No 

More than 6 co-authors: No 
Presenter #: 1 



C - V *  Title: 
4 

Automated Spot Mammography for Improved Imaging of Dense Breasts 

Abstract: 

PURPOSE: 
A primary limitation of conventional screen-film   mammography is the inability to adequately image lesions 
within dense tissue.  Because of the low signal-to-noise ratio in dense tissue regions, this will also likely be a 
problem in digital mammography. We are developing an automated spot mammography technique that should 
help alleviate this problem. It involves automatically detecting large dense regions within digital mammograms 
followed by automated x-ray beam collimation and spot compression to generate a second mammogram of only the 
dense regions. 
METHOD/MATERIALS: 
Computerized image analysis is applied to a digital mammogram to segment the dense area and identify large 

dense regions. The minimum sized rectangle or ellipse that bounds the dense region is automatically determined. 
The coordinates of the bounding region are then employed to position collimator blades via stepper motors in a 
custom-built asymmetric and rotatable collimator. To attain spot compression at the desired location, the breast is 
maintained in its original compression position by a special membrane device that is in contact with the breast in 
front of the conventional compression paddle. The conventional paddle is then removed and replaced by an 
apparatus that translates the spot paddle to the desired x,  y location, and the spot paddle is then moved in 
to compress the breast. 
RESULTS: 
Prototype collimator, spot paddle translator, and breast restraining devices have been built.   A compressible 
breast-mimicking phantom containing simulated masses and microcalcifications within dense regions has been 
designed and is being constructed. Automated spot compression images of the breast phantom obtained with a 
computed radiography detector will be presented and compared with corresponding images obtained without spot 
compression and with only spot collimation. 
CONCLUSIONS: 
Automated spot compression digital mammography is a technique that could be employed in screening to improve 
imaging of dense tissue regions. Initial experiences with a prototype apparatus will be evaluated with a breast 
phantom and will be used to develop improved methods for achieving automated spot compression. 


